83.5.21 problem 21

Internal problem ID [19116]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (D) at page 16
Problem number : 21
Date solved : Tuesday, January 28, 2025 at 12:58:17 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \end{align*}

Solution by Maple

Time used: 0.046 (sec). Leaf size: 49

dsolve(diff(y(x),x)+y(x)*cos(x)=y(x)^n*sin(2*x),y(x), singsol=all)
 
\[ y \left (x \right ) = \left (\frac {{\mathrm e}^{\sin \left (x \right ) \left (n -1\right )} c_{1} n -{\mathrm e}^{\sin \left (x \right ) \left (n -1\right )} c_{1} +2 n \sin \left (x \right )-2 \sin \left (x \right )+2}{n -1}\right )^{-\frac {1}{n -1}} \]

Solution by Mathematica

Time used: 6.143 (sec). Leaf size: 36

DSolve[D[y[x],x]+y[x]*Cos[x]==y[x]^n*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \left (c_1 e^{(n-1) \sin (x)}+\frac {2}{n-1}+2 \sin (x)\right ){}^{\frac {1}{1-n}} \]