83.7.1 problem 1

Internal problem ID [19119]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (F) at page 24
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 12:58:26 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.039 (sec). Leaf size: 19

dsolve((x^2*y(x)-2*x*y(x)^2)-(x^3-3*x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = -\frac {x}{3 \operatorname {LambertW}\left (-\frac {x^{{1}/{3}} {\mathrm e}^{\frac {c_{1}}{3}}}{3}\right )} \]

Solution by Mathematica

Time used: 4.432 (sec). Leaf size: 35

DSolve[(x^2*y[x]-2*x*y[x]^2)-(x^3-3*x^2*y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {x}{3 W\left (-\frac {1}{3} e^{-\frac {c_1}{3}} \sqrt [3]{x}\right )} \\ y(x)\to 0 \\ \end{align*}