Internal
problem
ID
[19126]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
II.
Equations
of
first
order
and
first
degree.
Exercise
II
(F)
at
page
24
Problem
number
:
5
(b)
Date
solved
:
Tuesday, January 28, 2025 at 12:58:52 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 2 y+3 x y^{\prime }+2 x y \left (3 y+4 x y^{\prime }\right )&=0 \end{align*}
Time used: 0.033 (sec). Leaf size: 25
\[
y \left (x \right ) = \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_{1} +3 \ln \left (\textit {\_Z} \right )+\ln \left (1+2 \textit {\_Z} \right )\right )}{x}
\]
Time used: 60.270 (sec). Leaf size: 1565
\begin{align*}
y(x)\to \frac {x \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}-4 x \sqrt {\frac {1}{8 x^2}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x^3}-\frac {1}{8 x^3 \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}}}-1}{8 x} \\
y(x)\to \frac {x \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}+4 x \sqrt {\frac {1}{8 x^2}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x^3}-\frac {1}{8 x^3 \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}}}-1}{8 x} \\
y(x)\to -\frac {x \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}+4 x \sqrt {\frac {1}{8 x^2}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x^3}+\frac {1}{8 x^3 \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}}}+1}{8 x} \\
y(x)\to -\frac {x \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}-4 x \sqrt {\frac {1}{8 x^2}+\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}-\frac {\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{2 \sqrt [3]{2} 3^{2/3} x^3}+\frac {1}{8 x^3 \sqrt {\frac {1}{x^2}-\frac {64 \sqrt [3]{\frac {2}{3}} e^{c_1}}{\sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}+\frac {4 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{2 c_1} x^8 \left (27+2048 e^{c_1} x\right )}-9 e^{c_1} x^4}}{x^3}}}}+1}{8 x} \\
\end{align*}