82.18.6 problem Ex. 6

Internal problem ID [18749]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter III. Equations of the first order but not of the first degree. Examples on chapter III. page 38
Problem number : Ex. 6
Date solved : Thursday, March 13, 2025 at 12:45:15 PM
CAS classification : [[_homogeneous, `class C`], _rational, _dAlembert]

\begin{align*} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.145 (sec). Leaf size: 745
ode:=a*y(x)*diff(y(x),x)^2+(2*x-b)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.858 (sec). Leaf size: 187
ode=a*y[x]*D[y[x],x]^2+(2*x-b)*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {2} e^{\frac {c_1}{2}} \sqrt {2 a e^{c_1}+b-2 x} \\ y(x)\to \sqrt {2} e^{\frac {c_1}{2}} \sqrt {2 a e^{c_1}+b-2 x} \\ y(x)\to -\frac {e^{\frac {c_1}{2}} \sqrt {-2 b+4 x+e^{c_1}}}{2 \sqrt {a}} \\ y(x)\to \frac {e^{\frac {c_1}{2}} \sqrt {-2 b+4 x+e^{c_1}}}{2 \sqrt {a}} \\ y(x)\to 0 \\ y(x)\to -\frac {i (b-2 x)}{2 \sqrt {a}} \\ y(x)\to \frac {i (b-2 x)}{2 \sqrt {a}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*y(x)*Derivative(y(x), x)**2 + (-b + 2*x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out