10.9.22 problem 28

Internal problem ID [1324]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number : 28
Date solved : Monday, January 27, 2025 at 04:51:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 12

dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,exp(x)],singsol=all)
 
\[ y = c_1 x +c_2 \,{\mathrm e}^{x} \]

Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 17

DSolve[(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 e^x-c_2 x \]