83.8.20 problem 21

Internal problem ID [19146]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 21
Date solved : Tuesday, January 28, 2025 at 01:06:07 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (2 x +2 y+3\right ) y^{\prime }&=x +y+1 \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 23

dsolve((2*x+2*y(x)+3)*diff(y(x),x)=x+y(x)+1,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\operatorname {LambertW}\left (2 \,{\mathrm e}^{9 x +8-9 c_{1}}\right )}{6}-x -\frac {4}{3} \]

Solution by Mathematica

Time used: 3.862 (sec). Leaf size: 37

DSolve[(2*x+2*y[x]+3)*D[y[x],x]==x+y[x]+1,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (W\left (-e^{9 x-1+c_1}\right )-6 x-8\right ) \\ y(x)\to -x-\frac {4}{3} \\ \end{align*}