Internal
problem
ID
[19152]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
II.
Equations
of
first
order
and
first
degree.
Misc
examples
on
chapter
II
at
page
25
Problem
number
:
27
Date
solved
:
Tuesday, January 28, 2025 at 01:10:04 PM
CAS
classification
:
[_exact, _rational]
Time used: 0.004 (sec). Leaf size: 280
\begin{align*}
y \left (x \right ) &= \frac {4 a x +\left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}}{2 \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {\left (-1-i \sqrt {3}\right ) \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}}{4}+\frac {x a \left (i \sqrt {3}-1\right )}{\left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {\left (i \sqrt {3}-1\right ) \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}}{4}-\frac {x \left (1+i \sqrt {3}\right ) a}{\left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_{1} \right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 5.520 (sec). Leaf size: 325
\begin{align*}
y(x)\to -\frac {2 a x+\sqrt [3]{2} \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}}{2^{2/3} \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\
y(x)\to \frac {2^{2/3} \left (1-i \sqrt {3}\right ) \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}+2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) a x}{4 \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\
y(x)\to \frac {2^{2/3} \left (1+i \sqrt {3}\right ) \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}+2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) a x}{4 \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\
\end{align*}