82.22.2 problem Ex. 2

Internal problem ID [18777]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems at page 48
Problem number : Ex. 2
Date solved : Thursday, March 13, 2025 at 12:56:00 PM
CAS classification : [_quadrature]

\begin{align*} a {y^{\prime }}^{3}&=27 y \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 191
ode:=a*diff(y(x),x)^3 = 27*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {2 \left (-x +c_{1} \right ) \sqrt {2}\, \sqrt {\left (-c_{1} +x \right ) a}}{a} \\ y \left (x \right ) &= \frac {2 \left (-x +c_{1} \right ) \sqrt {2}\, \sqrt {\left (-c_{1} +x \right ) a}}{a} \\ y \left (x \right ) &= \frac {\left (i-\sqrt {3}\right ) \sqrt {a \left (-c_{1} +x \right ) \left (1+i \sqrt {3}\right )}\, \left (-c_{1} +x \right )}{a} \\ y \left (x \right ) &= \frac {\left (-x +c_{1} \right ) \left (i-\sqrt {3}\right ) \sqrt {a \left (-c_{1} +x \right ) \left (1+i \sqrt {3}\right )}}{a} \\ y \left (x \right ) &= \frac {\left (-x +c_{1} \right ) \left (\sqrt {3}+i\right ) \sqrt {\left (i \sqrt {3}-1\right ) \left (-x +c_{1} \right ) a}}{a} \\ y \left (x \right ) &= \frac {\left (\sqrt {3}+i\right ) \sqrt {\left (i \sqrt {3}-1\right ) \left (-x +c_{1} \right ) a}\, \left (-c_{1} +x \right )}{a} \\ \end{align*}
Mathematica. Time used: 14.355 (sec). Leaf size: 106
ode=a*D[y[x],x]^3==27*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (\frac {3 x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (-\frac {3 \sqrt [3]{-1} x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (\frac {3 (-1)^{2/3} x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 96.722 (sec). Leaf size: 236
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x)**3 - 27*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {2 \sqrt {6} \sqrt {\frac {C_{1} + 3 x}{a}} \left (C_{1} + 3 x\right )}{9}, \ y{\left (x \right )} = \frac {2 \sqrt {6} \sqrt {\frac {C_{1} + 3 x}{a}} \left (C_{1} + 3 x\right )}{9}, \ y{\left (x \right )} = \sqrt {\frac {2 C_{1} - 3 x - 3 \sqrt {3} i x}{a}} \left (- \frac {2 \sqrt {3} C_{1}}{9} + \frac {\sqrt {3} x}{3} + i x\right ), \ y{\left (x \right )} = \sqrt {\frac {2 C_{1} - 3 x - 3 \sqrt {3} i x}{a}} \left (\frac {2 \sqrt {3} C_{1}}{9} - \frac {\sqrt {3} x}{3} - i x\right ), \ y{\left (x \right )} = \sqrt {\frac {2 C_{1} - 3 x + 3 \sqrt {3} i x}{a}} \left (- \frac {2 \sqrt {3} C_{1}}{9} + \frac {\sqrt {3} x}{3} - i x\right ), \ y{\left (x \right )} = \sqrt {\frac {2 C_{1} - 3 x + 3 \sqrt {3} i x}{a}} \left (\frac {2 \sqrt {3} C_{1}}{9} - \frac {\sqrt {3} x}{3} + i x\right )\right ] \]