Internal
problem
ID
[18781]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IV.
Singular
solutions.
problems
on
chapter
IV.
page
49
Problem
number
:
Ex.
4
Date
solved
:
Thursday, March 13, 2025 at 12:56:08 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=y(x) = x*diff(y(x),x)+(b^2+a^2*diff(y(x),x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=y[x]==x*D[y[x],x]+Sqrt[b^2+a^2*D[y[x],x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-x*Derivative(y(x), x) - sqrt(a**2*Derivative(y(x), x) + b**2) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out