82.23.6 problem Ex. 7

Internal problem ID [18783]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems on chapter IV. page 49
Problem number : Ex. 7
Date solved : Thursday, March 13, 2025 at 12:56:12 PM
CAS classification : [_quadrature]

\begin{align*} 4 {y^{\prime }}^{2}&=9 x \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 19
ode:=4*diff(y(x),x)^2 = 9*x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -x^{{3}/{2}}+c_{1} \\ y \left (x \right ) &= x^{{3}/{2}}+c_{1} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 27
ode=4*D[y[x],x]^2==9*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x^{3/2}+c_1 \\ y(x)\to x^{3/2}+c_1 \\ \end{align*}
Sympy. Time used: 0.313 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*x + 4*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - x^{\frac {3}{2}}, \ y{\left (x \right )} = C_{1} + x^{\frac {3}{2}}\right ] \]