83.19.2 problem 2

Internal problem ID [19230]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (B) at page 55
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 01:14:46 PM
CAS classification : [_dAlembert]

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+x&=0 \end{align*}

Solution by Maple

Time used: 0.040 (sec). Leaf size: 299

dsolve(diff(y(x),x)^2-diff(y(x),x)*y(x)+x=0,y(x), singsol=all)
 
\begin{align*} \frac {\left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}-4 x}\right ) c_{1}}{\sqrt {2 y \left (x \right )-2 \sqrt {y \left (x \right )^{2}-4 x}+4}\, \sqrt {-4+2 y \left (x \right )-2 \sqrt {y \left (x \right )^{2}-4 x}}}+x +\frac {\left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}-4 x}\right ) \left (-\ln \left (2\right )+\ln \left (y \left (x \right )-\sqrt {y \left (x \right )^{2}-4 x}+\sqrt {2 y \left (x \right )^{2}-2 y \left (x \right ) \sqrt {y \left (x \right )^{2}-4 x}-4 x -4}\right )\right )}{\sqrt {2 y \left (x \right )^{2}-2 y \left (x \right ) \sqrt {y \left (x \right )^{2}-4 x}-4 x -4}} &= 0 \\ \frac {\left (y \left (x \right )+\sqrt {y \left (x \right )^{2}-4 x}\right ) c_{1}}{\sqrt {2 y \left (x \right )+2 \sqrt {y \left (x \right )^{2}-4 x}+4}\, \sqrt {-4+2 y \left (x \right )+2 \sqrt {y \left (x \right )^{2}-4 x}}}+x +\frac {\left (y \left (x \right )+\sqrt {y \left (x \right )^{2}-4 x}\right ) \left (\ln \left (2\right )-\ln \left (y \left (x \right )+\sqrt {y \left (x \right )^{2}-4 x}+\sqrt {2 y \left (x \right )^{2}+2 y \left (x \right ) \sqrt {y \left (x \right )^{2}-4 x}-4 x -4}\right )\right )}{\sqrt {2 y \left (x \right )^{2}+2 y \left (x \right ) \sqrt {y \left (x \right )^{2}-4 x}-4 x -4}} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.633 (sec). Leaf size: 58

DSolve[D[y[x],x]^2-D[y[x],x]*y[x]+x==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left \{x=-\frac {K[1] \arcsin (K[1])}{\sqrt {1-K[1]^2}}+\frac {c_1 K[1]}{\sqrt {1-K[1]^2}},y(x)=\frac {x}{K[1]}+K[1]\right \},\{y(x),K[1]\}\right ] \]