Internal
problem
ID
[18850]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
Problems
at
page
88
Problem
number
:
Ex.
3
Date
solved
:
Thursday, March 13, 2025 at 01:03:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-20*y(x) = (1+x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-20*y[x]==(x+1)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - (x + 1)**2 - 20*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)