83.20.4 problem 4

Internal problem ID [19242]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (C) at page 56
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 01:15:30 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}+2 x y^{\prime }&=y \end{align*}

Solution by Maple

Time used: 0.042 (sec). Leaf size: 69

dsolve(diff(y(x),x)^2*y(x)+2*diff(y(x),x)*x=y(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -i x \\ y \left (x \right ) &= i x \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \sqrt {c_{1} \left (c_{1} -2 x \right )} \\ y \left (x \right ) &= \sqrt {c_{1} \left (c_{1} +2 x \right )} \\ y \left (x \right ) &= -\sqrt {c_{1} \left (c_{1} -2 x \right )} \\ y \left (x \right ) &= -\sqrt {c_{1} \left (c_{1} +2 x \right )} \\ \end{align*}

Solution by Mathematica

Time used: 0.431 (sec). Leaf size: 126

DSolve[D[y[x],x]^2*y[x]+2*D[y[x],x]*x==y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -e^{\frac {c_1}{2}} \sqrt {-2 x+e^{c_1}} \\ y(x)\to e^{\frac {c_1}{2}} \sqrt {-2 x+e^{c_1}} \\ y(x)\to -e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}} \\ y(x)\to e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}} \\ y(x)\to 0 \\ y(x)\to -i x \\ y(x)\to i x \\ \end{align*}