82.39.10 problem Ex. 10

Internal problem ID [18863]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VII. Linear equations with variable coefficients. End of chapter problems at page 91
Problem number : Ex. 10
Date solved : Thursday, March 13, 2025 at 01:03:43 PM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y&=\left (1+\ln \left (x \right )\right )^{2} \end{align*}

Maple. Time used: 0.352 (sec). Leaf size: 34
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+9*x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = (ln(x)+1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (c_3 \ln \left (x \right )+c_{1} \right ) \cos \left (\ln \left (x \right )\right )+\left (c_4 \ln \left (x \right )+c_{2} \right ) \sin \left (\ln \left (x \right )\right )+\ln \left (x \right )^{2}+2 \ln \left (x \right )-3 \]
Mathematica. Time used: 0.162 (sec). Leaf size: 39
ode=x^4*D[y[x],{x,4}]+6*x^3*D[y[x],{x,3}]+9*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==(1+Log[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \log ^2(x)+2 \log (x)+(c_2 \log (x)+c_1) \cos (\log (x))+(c_4 \log (x)+c_3) \sin (\log (x))-3 \]
Sympy. Time used: 0.467 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + 9*x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - (log(x) + 1)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \log {\left (x \right )} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \log {\left (x \right )} \cos {\left (\log {\left (x \right )} \right )} + C_{3} \sin {\left (\log {\left (x \right )} \right )} + C_{4} \cos {\left (\log {\left (x \right )} \right )} + \log {\left (x \right )}^{2} + 2 \log {\left (x \right )} - 3 \]