83.22.6 problem 6

Internal problem ID [19260]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (E) at page 63
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 01:16:32 PM
CAS classification : [_quadrature]

\begin{align*} y&=\frac {2 a {y^{\prime }}^{2}}{\left ({y^{\prime }}^{2}+1\right )^{2}} \end{align*}

Solution by Maple

Time used: 0.055 (sec). Leaf size: 141

dsolve(y(x)=(2*a*diff(y(x),x)^2)/(diff(y(x),x)^2+1)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ x -\int _{}^{y \left (x \right )}\frac {\textit {\_a}}{\sqrt {\textit {\_a} \left (a -\textit {\_a} +\sqrt {a \left (-2 \textit {\_a} +a \right )}\right )}}d \textit {\_a} -c_{1} &= 0 \\ x -\int _{}^{y \left (x \right )}\frac {\textit {\_a}}{\sqrt {\textit {\_a} \left (a -\textit {\_a} -\sqrt {a \left (-2 \textit {\_a} +a \right )}\right )}}d \textit {\_a} -c_{1} &= 0 \\ x +\int _{}^{y \left (x \right )}\frac {\textit {\_a}}{\sqrt {\textit {\_a} \left (a -\textit {\_a} +\sqrt {a \left (-2 \textit {\_a} +a \right )}\right )}}d \textit {\_a} -c_{1} &= 0 \\ x +\int _{}^{y \left (x \right )}\frac {\textit {\_a}}{\sqrt {\textit {\_a} \left (a -\textit {\_a} -\sqrt {a \left (-2 \textit {\_a} +a \right )}\right )}}d \textit {\_a} -c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 102.351 (sec). Leaf size: 572

DSolve[y[x]==(2*a*D[y[x],x]^2)/(D[y[x],x]^2+1)^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\text {$\#$1} a} \left (-\sqrt {a (a-2 \text {$\#$1})}+2 \text {$\#$1}+a\right )-2 a \sqrt {-a \left (\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a\right )} \arctan \left (\frac {\sqrt {\text {$\#$1} a}}{\sqrt {-a \left (\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a\right )}}\right )}{2 \sqrt {\text {$\#$1} a} \sqrt {-\frac {\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a}{\text {$\#$1}}}}\&\right ][-x+c_1] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\text {$\#$1} a} \left (-\sqrt {a (a-2 \text {$\#$1})}+2 \text {$\#$1}+a\right )-2 a \sqrt {-a \left (\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a\right )} \arctan \left (\frac {\sqrt {\text {$\#$1} a}}{\sqrt {-a \left (\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a\right )}}\right )}{2 \sqrt {\text {$\#$1} a} \sqrt {-\frac {\sqrt {a (a-2 \text {$\#$1})}+\text {$\#$1}-a}{\text {$\#$1}}}}\&\right ][x+c_1] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\text {$\#$1} a} \left (\sqrt {a (a-2 \text {$\#$1})}+2 \text {$\#$1}+a\right )-2 a \sqrt {a \left (\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a\right )} \arctan \left (\frac {\sqrt {\text {$\#$1} a}}{\sqrt {a \left (\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a\right )}}\right )}{2 \sqrt {\frac {\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a}{\text {$\#$1}}} \sqrt {\text {$\#$1} a}}\&\right ][-x+c_1] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\text {$\#$1} a} \left (\sqrt {a (a-2 \text {$\#$1})}+2 \text {$\#$1}+a\right )-2 a \sqrt {a \left (\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a\right )} \arctan \left (\frac {\sqrt {\text {$\#$1} a}}{\sqrt {a \left (\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a\right )}}\right )}{2 \sqrt {\frac {\sqrt {a (a-2 \text {$\#$1})}-\text {$\#$1}+a}{\text {$\#$1}}} \sqrt {\text {$\#$1} a}}\&\right ][x+c_1] \\ y(x)\to 0 \\ \end{align*}