83.22.12 problem 12

Internal problem ID [19266]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (E) at page 63
Problem number : 12
Date solved : Tuesday, January 28, 2025 at 01:17:52 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} a^{2} y {y^{\prime }}^{2}-4 x y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.115 (sec). Leaf size: 114

dsolve(a^2*y(x)*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {a^{2} \textit {\_a}^{2}+\sqrt {-a^{2} \textit {\_a}^{2}+4}-2}{\textit {\_a} \left (a^{2} \textit {\_a}^{2}-3\right )}d \textit {\_a} +c_{1} \right ) x \\ y \left (x \right ) &= \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {a^{2} \textit {\_a}^{2}-\sqrt {-a^{2} \textit {\_a}^{2}+4}-2}{\textit {\_a} \left (a^{2} \textit {\_a}^{2}-3\right )}d \textit {\_a} +c_{1} \right ) x \\ \end{align*}

Solution by Mathematica

Time used: 60.886 (sec). Leaf size: 1287

DSolve[a^2*y[x]*D[y[x],x]^2-4*x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sqrt {\frac {x^2}{a^2}+\frac {\sqrt [3]{2} a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{\sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}+\frac {\sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{\sqrt [3]{2} a^6}} \\ y(x)\to \sqrt {\frac {x^2}{a^2}+\frac {\sqrt [3]{2} a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{\sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}+\frac {\sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{\sqrt [3]{2} a^6}} \\ y(x)\to -\sqrt {\frac {x^2}{a^2}+\frac {i \left (\sqrt {3}+i\right ) a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{2^{2/3} \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{2 \sqrt [3]{2} a^6}} \\ y(x)\to \sqrt {\frac {x^2}{a^2}+\frac {i \left (\sqrt {3}+i\right ) a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{2^{2/3} \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{2 \sqrt [3]{2} a^6}} \\ y(x)\to -\sqrt {\frac {x^2}{a^2}-\frac {i \left (\sqrt {3}-i\right ) a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{2^{2/3} \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{2 \sqrt [3]{2} a^6}} \\ y(x)\to \sqrt {\frac {x^2}{a^2}-\frac {i \left (\sqrt {3}-i\right ) a^2 x \left (x^3+2 e^{3 a^2 c_1}\right )}{2^{2/3} \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {a^{24} e^{3 a^2 c_1} \left (-4 x^3+e^{3 a^2 c_1}\right ){}^3}-a^{12} \left (10 x^3 e^{3 a^2 c_1}+e^{6 a^2 c_1}-2 x^6\right )}}{2 \sqrt [3]{2} a^6}} \\ \end{align*}