83.22.21 problem 21

Internal problem ID [19275]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (E) at page 63
Problem number : 21
Date solved : Tuesday, January 28, 2025 at 01:22:05 PM
CAS classification : [_quadrature]

\begin{align*} y&=a y^{\prime }+b {y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.031 (sec). Leaf size: 207

dsolve(y(x)=a*diff(y(x),x)+b*diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= {\mathrm e}^{\frac {-a \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a \sqrt {\frac {1}{b}}}\right )-a +x -c_{1}}{a}} \left (a \sqrt {\frac {1}{b}}+{\mathrm e}^{\frac {-a \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a \sqrt {\frac {1}{b}}}\right )-a +x -c_{1}}{a}}\right ) \\ y \left (x \right ) &= \frac {a^{2} \left (\operatorname {LambertW}\left (-\frac {2 \sqrt {b}\, {\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a}\right )+2\right ) \operatorname {LambertW}\left (-\frac {2 \sqrt {b}\, {\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a}\right )}{4 b} \\ y \left (x \right ) &= \frac {a^{2} \left (\operatorname {LambertW}\left (\frac {2 \sqrt {b}\, {\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a}\right )+2\right ) \operatorname {LambertW}\left (\frac {2 \sqrt {b}\, {\mathrm e}^{\frac {-c_{1} -a +x}{a}}}{a}\right )}{4 b} \\ \end{align*}

Solution by Mathematica

Time used: 0.841 (sec). Leaf size: 123

DSolve[y[x]==a*D[y[x],x]+b*D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} b+a^2}+a \log \left (b \left (\sqrt {4 \text {$\#$1} b+a^2}-a\right )\right )}{2 b}\&\right ]\left [\frac {x}{2 b}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {4 \text {$\#$1} b+a^2}-a \log \left (\sqrt {4 \text {$\#$1} b+a^2}+a\right )}{2 b}\&\right ]\left [-\frac {x}{2 b}+c_1\right ] \\ y(x)\to 0 \\ \end{align*}