83.23.22 problem 22

Internal problem ID [19303]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter V. Singular solutions. Exercise V at page 76
Problem number : 22
Date solved : Tuesday, January 28, 2025 at 01:25:28 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y}&={y^{\prime }}^{2} {\mathrm e}^{-2 x} \end{align*}

Solution by Maple

Time used: 0.105 (sec). Leaf size: 128

dsolve((1-diff(y(x),x))^2-exp(-2*y(x))=diff(y(x),x)^2*exp(-2*x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= c_{1} -\ln \left (\frac {\sqrt {{\mathrm e}^{-2 x +4 c_{1}}-{\mathrm e}^{-2 x +2 c_{1}}}\, {\mathrm e}^{2 x}-{\mathrm e}^{2 c_{1}}}{-{\mathrm e}^{2 c_{1} +2 x}+{\mathrm e}^{2 c_{1}}+{\mathrm e}^{2 x}}\right ) \\ y \left (x \right ) &= c_{1} -\ln \left (\frac {-\sqrt {{\mathrm e}^{-2 x +4 c_{1}}-{\mathrm e}^{-2 x +2 c_{1}}}\, {\mathrm e}^{2 x}-{\mathrm e}^{2 c_{1}}}{-{\mathrm e}^{2 c_{1} +2 x}+{\mathrm e}^{2 c_{1}}+{\mathrm e}^{2 x}}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 70.160 (sec). Leaf size: 377

DSolve[(1-D[y[x],x])^2-Exp[-2*y[x]]==D[y[x],x]^2*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \log \left (-\frac {i \left (e^x-1\right ) e^{c_1 \left (-e^{-x}\right ) \sqrt {e^{2 x}}} \left (e^x+e^{2 c_1 e^{-x} \sqrt {e^{2 x}}}+e^{x+2 c_1 e^{-x} \sqrt {e^{2 x}}}-1\right )}{2 \sqrt {\left (e^x-1\right )^2}}\right ) \\ y(x)\to \log \left (\frac {i \left (e^x-1\right ) e^{c_1 \left (-e^{-x}\right ) \sqrt {e^{2 x}}} \left (e^x+e^{2 c_1 e^{-x} \sqrt {e^{2 x}}}+e^{x+2 c_1 e^{-x} \sqrt {e^{2 x}}}-1\right )}{2 \sqrt {\left (e^x-1\right )^2}}\right ) \\ y(x)\to \log \left (-\frac {i \left (e^x+1\right ) e^{c_1 \left (-e^{-x}\right ) \sqrt {e^{2 x}}} \left (e^x+e^{2 c_1 e^{-x} \sqrt {e^{2 x}}}+e^{x+2 c_1 e^{-x} \sqrt {e^{2 x}}}-1\right )}{2 \sqrt {\left (e^x+1\right )^2}}\right ) \\ y(x)\to \log \left (\frac {i \left (e^x+1\right ) e^{c_1 \left (-e^{-x}\right ) \sqrt {e^{2 x}}} \left (e^x+e^{2 c_1 e^{-x} \sqrt {e^{2 x}}}+e^{x+2 c_1 e^{-x} \sqrt {e^{2 x}}}-1\right )}{2 \sqrt {\left (e^x+1\right )^2}}\right ) \\ \end{align*}