Internal
problem
ID
[18949]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
end
of
chapter
at
page
120
Problem
number
:
Ex.
12
Date
solved
:
Thursday, March 13, 2025 at 01:13:06 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using reduction of order method given that one solution is
ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)-a^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]-a^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*y(x) - x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False