83.4.15 problem 15

Internal problem ID [19008]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (C) at page 12
Problem number : 15
Date solved : Thursday, March 13, 2025 at 01:20:13 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1&=0 \end{align*}

Maple. Time used: 0.616 (sec). Leaf size: 46
ode:=(6*x-5*y(x)+4)*diff(y(x),x)+y(x)-2*x-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\left (-4 x -1\right ) \operatorname {RootOf}\left (-3+\left (320 c_{1} x^{3}+240 c_{1} x^{2}+60 c_{1} x +5 c_{1} \right ) \textit {\_Z}^{4}-\textit {\_Z} \right )}{20}+\frac {2 x}{5}+\frac {3}{5} \]
Mathematica. Time used: 60.149 (sec). Leaf size: 4977
ode=(6*x-5*y[x]+4)*D[y[x],x]+(y[x]-2*x-1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + (6*x - 5*y(x) + 4)*Derivative(y(x), x) + y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out