9.4.5 problem problem 5

Internal problem ID [969]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number : problem 5
Date solved : Tuesday, March 04, 2025 at 12:06:34 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=6 x_{1} \left (t \right )-7 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 34
ode:=[diff(x__1(t),t) = 6*x__1(t)-7*x__2(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{5 t}+c_2 \,{\mathrm e}^{-t} \\ x_{2} \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{5 t}}{7}+c_2 \,{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 72
ode={D[ x1[t],t]==6*x1[t]-7*x2[t],D[ x2[t],t]==x1[t]-2*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{6} e^{-t} \left (c_1 \left (7 e^{6 t}-1\right )-7 c_2 \left (e^{6 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{6} e^{-t} \left (c_1 \left (e^{6 t}-1\right )-c_2 \left (e^{6 t}-7\right )\right ) \\ \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-6*x__1(t) + 7*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{1} e^{- t} + 7 C_{2} e^{5 t}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{5 t}\right ] \]