83.41.2 problem 2 (i)

Internal problem ID [19482]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VIII. Linear equations of second order. Excercise at end of chapter VIII. Page 141
Problem number : 2 (i)
Date solved : Tuesday, January 28, 2025 at 01:46:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y&=x^{3} \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 19

dsolve(x^2*diff(y(x),x$2)-2*x*(1+x)*diff(y(x),x)+2*(1+x)*y(x)=x^3,y(x), singsol=all)
 
\[ y \left (x \right ) = -\frac {x \left (-2 c_{1} {\mathrm e}^{2 x}+x -2 c_{2} \right )}{2} \]

Solution by Mathematica

Time used: 0.030 (sec). Leaf size: 28

DSolve[x^2*D[y[x],{x,2}]-2*x*(1+x)*D[y[x],x]+2*(1+x)*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to -\frac {1}{4} x \left (2 x-2 c_2 e^{2 x}+1-4 c_1\right ) \]