83.41.22 problem 5 (ix)

Internal problem ID [19502]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VIII. Linear equations of second order. Excercise at end of chapter VIII. Page 141
Problem number : 5 (ix)
Date solved : Tuesday, January 28, 2025 at 01:46:55 PM
CAS classification : [_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }&=m^{2} y \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 33

dsolve((x^2-1)*diff(y(x),x$2)+x*diff(y(x),x)=m^2*y(x),y(x), singsol=all)
 
\[ y \left (x \right ) = c_{1} \left (x +\sqrt {x^{2}-1}\right )^{-m}+c_{2} \left (x +\sqrt {x^{2}-1}\right )^{m} \]

Solution by Mathematica

Time used: 0.040 (sec). Leaf size: 45

DSolve[(x^2-1)*D[y[x],{x,2}]+x*D[y[x],x]==m^2*y[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \cosh \left (m \log \left (\sqrt {x^2-1}+x\right )\right )+i c_2 \sinh \left (m \log \left (\sqrt {x^2-1}+x\right )\right ) \]