83.45.14 problem Ex 14 page 59

Internal problem ID [19557]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter IV. Equations of the first order but not of the first degree
Problem number : Ex 14 page 59
Date solved : Tuesday, January 28, 2025 at 01:53:42 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y&=-x y^{\prime }+x^{4} {y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.848 (sec). Leaf size: 77

dsolve(y(x)=-x*diff(y(x),x)+x^4*diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {1}{4 x^{2}} \\ y \left (x \right ) &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ y \left (x \right ) &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y \left (x \right ) &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y \left (x \right ) &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ \end{align*}

Solution by Mathematica

Time used: 0.511 (sec). Leaf size: 123

DSolve[y[x]==-x*D[y[x],x]+x^4*D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}