10.13.6 problem 7

Internal problem ID [1366]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number : 7
Date solved : Monday, January 27, 2025 at 04:56:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 39

Order:=6; 
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-x^{2}+\frac {1}{3} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{3}+\frac {1}{8} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{8}-\frac {x^3}{2}+x\right )+c_1 \left (\frac {x^4}{3}-x^2+1\right ) \]