83.45.22 problem Ex 24 page 62

Internal problem ID [19565]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter IV. Equations of the first order but not of the first degree
Problem number : Ex 24 page 62
Date solved : Tuesday, January 28, 2025 at 01:57:00 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y^{\prime } y\right )+\left (x +y^{\prime } y\right )^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.077 (sec). Leaf size: 103

dsolve((x^2+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)*diff(y(x),x))+(x+y(x)*diff(y(x),x))^2=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= \operatorname {RootOf}\left (-2 \ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {2 \textit {\_a}^{2}+\sqrt {2}\, \sqrt {\textit {\_a} \left (\textit {\_a} -1\right )^{2}}}{\textit {\_a} \left (\textit {\_a}^{2}+1\right )}d \textit {\_a} +2 c_{1} \right ) x \\ y \left (x \right ) &= \operatorname {RootOf}\left (-2 \ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {\sqrt {2}\, \sqrt {\textit {\_a} \left (\textit {\_a} -1\right )^{2}}-2 \textit {\_a}^{2}}{\textit {\_a} \left (\textit {\_a}^{2}+1\right )}d \textit {\_a} +2 c_{1} \right ) x \\ \end{align*}

Solution by Mathematica

Time used: 3.794 (sec). Leaf size: 167

DSolve[(x^2+y[x]^2)*(1+D[y[x],x])^2-2*(x+y[x])*(1+D[y[x],x])*(x+y[x]*D[y[x],x])+(x+y[x]*D[y[x],x])^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sqrt {-x \left (x+2 e^{\frac {c_1}{2}}\right )}-e^{\frac {c_1}{2}} \\ y(x)\to \sqrt {-x \left (x+2 e^{\frac {c_1}{2}}\right )}-e^{\frac {c_1}{2}} \\ y(x)\to e^{\frac {c_1}{2}}-\sqrt {x \left (-x+2 e^{\frac {c_1}{2}}\right )} \\ y(x)\to \sqrt {x \left (-x+2 e^{\frac {c_1}{2}}\right )}+e^{\frac {c_1}{2}} \\ y(x)\to -\sqrt {-x^2} \\ y(x)\to \sqrt {-x^2} \\ \end{align*}