83.46.7 problem Ex 7 page 71
Internal
problem
ID
[19572]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
V.
Singular
solutions
Problem
number
:
Ex
7
page
71
Date
solved
:
Tuesday, January 28, 2025 at 01:57:25 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
\begin{align*} {y^{\prime }}^{2}+2 x y^{\prime }-y&=0 \end{align*}
✓ Solution by Maple
Time used: 0.025 (sec). Leaf size: 642
dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
\begin{align*}
y \left (x \right ) &= \frac {\left (x^{2}-\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right ) \left (x^{2}+3 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right )}{4 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\
y \left (x \right ) &= \frac {\left (i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+2 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +x^{2}\right ) \left (i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}-6 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +x^{2}\right )}{16 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\
y \left (x \right ) &= \frac {\left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+x^{2}+2 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right ) \left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}+x^{2}-6 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{1}/{3}} x +\left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}\right )}{16 \left (-x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}+6 c_{1} \right )^{{2}/{3}}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 60.095 (sec). Leaf size: 931
DSolve[D[y[x],x]^2+2*x*D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {1}{4} \left (-x^2+\frac {x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (-18 x^2-\frac {9 i \left (\sqrt {3}-i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{-x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{4} \left (-x^2+\frac {x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 \left (1+i \sqrt {3}\right ) x \left (-x^3+8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (-18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{-x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}+8 e^{6 c_1}}\right ) \\
\end{align*}