83.47.4 problem Ex 4 page 82

Internal problem ID [19581]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VI. Homogeneous linear equations with variable coefficients
Problem number : Ex 4 page 82
Date solved : Tuesday, January 28, 2025 at 01:59:54 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 19

dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {c_{1} x^{3}+c_3 \ln \left (x \right )+c_{2}}{x^{2}} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 23

DSolve[x^3*D[y[x],{x,3}]+6*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_3 x^3+c_2 \log (x)+c_1}{x^2} \]