83.25.4 problem 4

Internal problem ID [19245]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VI. Homogeneous linear equations with variable coefficients. Exercise VI (B) at page 83
Problem number : 4
Date solved : Thursday, March 13, 2025 at 02:04:40 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=x^2*diff(diff(diff(y(x),x),x),x)+3*x*diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} +\sin \left (\ln \left (x \right )\right ) c_{2} +c_3 \cos \left (\ln \left (x \right )\right ) \]
Mathematica. Time used: 0.076 (sec). Leaf size: 21
ode=x^2*D[y[x],{x,3}]+3*x*D[y[x],{x,2}]+2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -c_1 \cos (\log (x))+c_2 \sin (\log (x))+c_3 \]
Sympy. Time used: 0.172 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 3)) + 3*x*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} \sin {\left (\log {\left (x \right )} \right )} + C_{3} \cos {\left (\log {\left (x \right )} \right )} \]