83.27.1 problem 1

Internal problem ID [19268]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (A) at page 104
Problem number : 1
Date solved : Thursday, March 13, 2025 at 02:11:45 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x y^{\prime \prime }+2 x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 26
ode:=x*diff(diff(y(x),x),x)+2*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = 2 \,\operatorname {Ei}_{1}\left (-2 x \right ) c_{1} x \,{\mathrm e}^{-2 x}+c_{1} +c_{2} x \,{\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.037 (sec). Leaf size: 34
ode=x*D[y[x],{x,2}]+2*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (2 c_2 x \operatorname {ExpIntegralEi}(2 x)+c_1 x-c_2 e^{2 x}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False