83.27.3 problem 3

Internal problem ID [19270]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (A) at page 104
Problem number : 3
Date solved : Thursday, March 13, 2025 at 02:11:48 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=(x^2+1)*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {c_{1} \operatorname {arcsinh}\left (x \right )+c_{2}}{\sqrt {x^{2}+1}} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 23
ode=(1+x^2)*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \text {arcsinh}(x)+c_1}{\sqrt {x^2+1}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False