83.28.2 problem 2

Internal problem ID [19288]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (B) at page 106
Problem number : 2
Date solved : Thursday, March 13, 2025 at 02:12:15 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x) = x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} \left (x -2\right )+c_{1} x +c_{2} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 19
ode=D[y[x],{x,2}]==x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (x-2)+c_2 x+c_1 \]
Sympy. Time used: 0.065 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x \left (C_{2} + e^{x}\right ) - 2 e^{x} \]