83.29.4 problem 4

Internal problem ID [19298]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (C) at page 107
Problem number : 4
Date solved : Thursday, March 13, 2025 at 02:12:32 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }+\frac {a^{2}}{y}&=0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 53
ode:=diff(diff(y(x),x),x)+a^2/y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y \left (x \right )}\frac {1}{\sqrt {-2 a^{2} \ln \left (\textit {\_a} \right )+c_{1}}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y \left (x \right )}\frac {1}{\sqrt {-2 a^{2} \ln \left (\textit {\_a} \right )+c_{1}}}d \textit {\_a} -x -c_{2} &= 0 \\ \end{align*}
Mathematica. Time used: 60.116 (sec). Leaf size: 110
ode=D[y[x],{x,2}]+a^2/y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \exp \left (\frac {c_1}{2 a^2}-\text {erf}^{-1}\left (-\sqrt {\frac {2}{\pi }} \sqrt {a^2 e^{-\frac {c_1}{a^2}} (x+c_2){}^2}\right ){}^2\right ) \\ y(x)\to \exp \left (\frac {c_1}{2 a^2}-\text {erf}^{-1}\left (\sqrt {\frac {2}{\pi }} \sqrt {a^2 e^{-\frac {c_1}{a^2}} (x+c_2){}^2}\right ){}^2\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2/y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out