83.32.1 problem 1

Internal problem ID [19321]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (F) at page 113
Problem number : 1
Date solved : Thursday, March 13, 2025 at 02:15:51 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} a y^{\prime \prime }&=y^{\prime } \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=a*diff(diff(y(x),x),x) = diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} +c_{2} {\mathrm e}^{\frac {x}{a}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 19
ode=a*D[y[x],{x,2}]==D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a c_1 e^{\frac {x}{a}}+c_2 \]
Sympy. Time used: 0.122 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{\frac {x}{a}} \]