83.32.3 problem 3

Internal problem ID [19323]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (F) at page 113
Problem number : 3
Date solved : Thursday, March 13, 2025 at 02:15:55 PM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\begin{align*} y^{\prime \prime \prime } y^{\prime \prime }&=2 \end{align*}

Maple. Time used: 0.058 (sec). Leaf size: 31
ode:=diff(diff(diff(y(x),x),x),x)*diff(diff(y(x),x),x) = 2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {8 \left (x +c_{1} \right )^{{5}/{2}}}{15}+c_{2} x +c_3 \\ y \left (x \right ) &= \frac {8 \left (x +c_{1} \right )^{{5}/{2}}}{15}+c_{2} x +c_3 \\ \end{align*}
Mathematica. Time used: 0.174 (sec). Leaf size: 61
ode=D[y[x],{x,3}]*D[y[x],{x,2}]==2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{15} \sqrt {2} (2 x+c_1){}^{5/2}+c_3 x+c_2 \\ y(x)\to \frac {1}{15} \sqrt {2} (2 x+c_1){}^{5/2}+c_3 x+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2))*Derivative(y(x), (x, 3)) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out