Internal
problem
ID
[1002]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
49
Date
solved
:
Tuesday, March 04, 2025 at 12:07:12 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 139*x__1(t)-14*x__2(t)-52*x__3(t)-14*x__4(t)+28*x__5(t), diff(x__2(t),t) = -22*x__1(t)+5*x__2(t)+7*x__3(t)+8*x__4(t)-7*x__5(t), diff(x__3(t),t) = 370*x__1(t)-38*x__2(t)-139*x__3(t)-38*x__4(t)+76*x__5(t), diff(x__4(t),t) = 152*x__1(t)-16*x__2(t)-59*x__3(t)-13*x__4(t)+35*x__5(t), diff(x__5(t),t) = 95*x__1(t)-10*x__2(t)-38*x__3(t)-7*x__4(t)+23*x__5(t)]; dsolve(ode);
ode={D[ x1[t],t]==139*x1[t]-14*x2[t]-52*x3[t]-14*x4[t]+28*x5[t],D[ x2[t],t]==-22*x1[t]+5*x2[t]+7*x3[t]+8*x4[t]-7*x5[t],D[ x3[t],t]==370*x1[t]-38*x2[t]-139*x3[t]-38*x4[t]+76*x5[t],D[ x4[t],t]==152*x1[t]-16*x2[t]-59*x3[t]-13*x4[t]+45*x5[t],D[ x5[t],t]==95*x1[t]-10*x2[t]-38*x3[t]-7*x4[t]+23*x5[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") x__5 = Function("x__5") ode=[Eq(-139*x__1(t) + 14*x__2(t) + 52*x__3(t) + 14*x__4(t) - 28*x__5(t) + Derivative(x__1(t), t),0),Eq(22*x__1(t) - 5*x__2(t) - 7*x__3(t) - 8*x__4(t) + 7*x__5(t) + Derivative(x__2(t), t),0),Eq(-370*x__1(t) + 38*x__2(t) + 139*x__3(t) + 38*x__4(t) - 76*x__5(t) + Derivative(x__3(t), t),0),Eq(-152*x__1(t) + 16*x__2(t) + 59*x__3(t) + 13*x__4(t) - 35*x__5(t) + Derivative(x__4(t), t),0),Eq(-95*x__1(t) + 10*x__2(t) + 38*x__3(t) + 7*x__4(t) - 23*x__5(t) + Derivative(x__5(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t),x__5(t)],ics=ics)