Internal
problem
ID
[19367]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(B)
at
page
128
Problem
number
:
1
Date
solved
:
Thursday, March 13, 2025 at 02:20:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+4*x*diff(y(x),x)+4*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*x*D[y[x],x]+4*x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*y(x) + 4*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False