83.37.9 problem 9

Internal problem ID [19375]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VIII. Linear equations of second order. Excercise VIII (B) at page 128
Problem number : 9
Date solved : Thursday, March 13, 2025 at 02:22:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*tan(x)*diff(y(x),x)-(a^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \sec \left (x \right ) \left (c_{1} \sinh \left (a x \right )+c_{2} \cosh \left (a x \right )\right ) \]
Mathematica. Time used: 0.047 (sec). Leaf size: 32
ode=D[y[x],{x,2}]-2*Tan[x]*D[y[x],x]-(1+a^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sec (x) \left (c_1 e^{-a x}+\frac {c_2 e^{a x}}{2 a}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq((-a**2 - 1)*y(x) - 2*tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False