Internal
problem
ID
[19380]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(B)
at
page
128
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 02:22:57 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(4*x^2-3)*y(x) = exp(x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-3)*y[x]==Exp[x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*Derivative(y(x), x) + (4*x**2 - 3)*y(x) - exp(x**2) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*y(x) - 3*y(x) - exp(x**2) + Derivative(y(x), (x, 2)))/(4*x) cannot be solved by the factorable group method