9.5.2 problem Example 3

Internal problem ID [1005]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
Problem number : Example 3
Date solved : Tuesday, March 04, 2025 at 12:07:19 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )-3 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=3 x_{1} \left (t \right )+7 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 32
ode:=[diff(x__1(t),t) = x__1(t)-3*x__2(t), diff(x__2(t),t) = 3*x__1(t)+7*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{4 t} \left (c_2 t +c_1 \right ) \\ x_{2} \left (t \right ) &= -\frac {{\mathrm e}^{4 t} \left (3 c_2 t +3 c_1 +c_2 \right )}{3} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 46
ode={D[ x1[t],t]==1*x1[t]-3*x2[t],D[ x2[t],t]==3*x1[t]+7*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to -e^{4 t} (c_1 (3 t-1)+3 c_2 t) \\ \text {x2}(t)\to e^{4 t} (3 (c_1+c_2) t+c_2) \\ \end{align*}
Sympy. Time used: 0.108 (sec). Leaf size: 44
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t) + 3*x__2(t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) - 7*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - 3 C_{2} t e^{4 t} - \left (3 C_{1} - C_{2}\right ) e^{4 t}, \ x^{2}{\left (t \right )} = 3 C_{1} e^{4 t} + 3 C_{2} t e^{4 t}\right ] \]