Internal
problem
ID
[19410]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
2
(viii)
Date
solved
:
Thursday, March 13, 2025 at 02:24:18 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(2*x-1)*diff(diff(y(x),x),x)-2*diff(y(x),x)+(3-2*x)*y(x) = 2*exp(x); dsolve(ode,y(x), singsol=all);
ode=(2*x-1)*D[y[x],{x,2}]-2*D[y[x],x]+(3-2*x)*y[x]==2*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3 - 2*x)*y(x) + (2*x - 1)*Derivative(y(x), (x, 2)) - 2*exp(x) - 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*y(x) - x*Derivative(y(x), (x, 2)) - 3*y(x)/2 + exp(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2))/2 cannot be solved by the factorable group method