Internal
problem
ID
[19413]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
3
Date
solved
:
Thursday, March 13, 2025 at 02:24:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(-x^2+1)^2*diff(diff(y(x),x),x)+(-x^2+1)*(3*x^2+1)*diff(y(x),x)+4*x*(x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(1-x^2)^2*D[y[x],{x,2}]+(1-x^2)*(1+3*x^2)*D[y[x],x]+(4*x)*(1+x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x**2)**2*Derivative(y(x), (x, 2)) + 4*x*(x**2 + 1)*y(x) + (1 - x**2)*(3*x**2 + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False