10.14.11 problem 7. case \(x_0=2\)

Internal problem ID [1393]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number : 7. case \(x_0=2\)
Date solved : Monday, January 27, 2025 at 04:56:39 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 2 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 76

Order:=6; 
dsolve((1+x^3)*diff(y(x),x$2)+4*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=2);
 
\[ y = \left (1-\frac {\left (x -2\right )^{2}}{18}+\frac {10 \left (x -2\right )^{3}}{243}-\frac {451 \left (x -2\right )^{4}}{17496}+\frac {1151 \left (x -2\right )^{5}}{78732}\right ) y \left (2\right )+\left (x -2-\frac {4 \left (x -2\right )^{2}}{9}+\frac {115 \left (x -2\right )^{3}}{486}-\frac {271 \left (x -2\right )^{4}}{2187}+\frac {9713 \left (x -2\right )^{5}}{157464}\right ) y^{\prime }\left (2\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 87

AsymptoticDSolveValue[(1+x^3)*D[y[x],{x,2}]+4*x*D[y[x],x]+y[x]==0,y[x],{x,2,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {1151 (x-2)^5}{78732}-\frac {451 (x-2)^4}{17496}+\frac {10}{243} (x-2)^3-\frac {1}{18} (x-2)^2+1\right )+c_2 \left (\frac {9713 (x-2)^5}{157464}-\frac {271 (x-2)^4}{2187}+\frac {115}{486} (x-2)^3-\frac {4}{9} (x-2)^2+x-2\right ) \]