83.44.4 problem Ex 4 page 36

Internal problem ID [19453]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter III. Ordinary linear differential equations with constant coefficients
Problem number : Ex 4 page 36
Date solved : Thursday, March 13, 2025 at 02:31:43 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 22
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+diff(y(x),x) = exp(-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = -\frac {{\mathrm e}^{-x}}{4}+\left (\left (x -1\right ) c_{1} +c_{2} \right ) {\mathrm e}^{x}+c_3 \]
Mathematica. Time used: 0.077 (sec). Leaf size: 30
ode=D[y[x],{x,3}]-2*D[y[x],{x,2}]+D[y[x],x]==Exp[-x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {e^{-x}}{4}+e^x (c_2 (x-1)+c_1)+c_3 \]
Sympy. Time used: 0.160 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - exp(-x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} + C_{3} x\right ) e^{x} - \frac {e^{- x}}{4} \]