Internal
problem
ID
[19501]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
3
page
80
Date
solved
:
Thursday, March 13, 2025 at 02:42:56 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = x^2+3*x; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==x^2+3*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) - x**2 + 2*x*Derivative(y(x), x) - 3*x - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)