Internal
problem
ID
[19512]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
14
page
91
Date
solved
:
Thursday, March 13, 2025 at 02:43:13 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-(2*m-1)*x*diff(y(x),x)+(m^2+n^2)*y(x) = n^2*x^m*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-(2*m-1)*x*D[y[x],x]+(m^2+n^2)*y[x]==n^2*x^m*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-n**2*x**m*log(x) + x**2*Derivative(y(x), (x, 2)) - x*(2*m - 1)*Derivative(y(x), x) + (m**2 + n**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)