83.48.11 problem Ex 11 page 106

Internal problem ID [19524]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VII. Exact differential equations.
Problem number : Ex 11 page 106
Date solved : Thursday, March 13, 2025 at 02:47:03 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x) = x^2*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (-x^{2}+6\right ) \sin \left (x \right )+c_{1} x -4 x \cos \left (x \right )+c_{2} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 26
ode=D[y[x],{x,2}]==x^2*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\left (x^2-6\right ) \sin (x)-4 x \cos (x)+c_2 x+c_1 \]
Sympy. Time used: 0.105 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - x^{2} \sin {\left (x \right )} + x \left (C_{2} - 4 \cos {\left (x \right )}\right ) + 6 \sin {\left (x \right )} \]