83.48.14 problem Ex 14 page 109

Internal problem ID [19527]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VII. Exact differential equations.
Problem number : Ex 14 page 109
Date solved : Thursday, March 13, 2025 at 02:47:47 PM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 33
ode:=(x^2+1)*diff(diff(y(x),x),x)+1+diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\ln \left (c_{1} x -1\right ) c_{1}^{2}+c_{2} c_{1}^{2}+c_{1} x +\ln \left (c_{1} x -1\right )}{c_{1}^{2}} \]
Mathematica. Time used: 6.723 (sec). Leaf size: 33
ode=(1+x^2)*D[y[x],{x,2}]+1+D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x \cot (c_1)+\csc ^2(c_1) \log (-x \sin (c_1)-\cos (c_1))+c_2 \]
Sympy. Time used: 1.618 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \int \tan {\left (C_{2} - \operatorname {atan}{\left (x \right )} \right )}\, dx, \ y{\left (x \right )} = C_{1} + \int \tan {\left (C_{2} - \operatorname {atan}{\left (x \right )} \right )}\, dx\right ] \]