83.49.1 problem Ex 1 page 120

Internal problem ID [19535]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VIII. Linear equations of second order
Problem number : Ex 1 page 120
Date solved : Thursday, March 13, 2025 at 02:48:16 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 13
ode:=x*diff(diff(y(x),x),x)-(2*x-1)*diff(y(x),x)+(x-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} \left (c_{2} \ln \left (x \right )+c_{1} \right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 17
ode=x*D[y[x],{x,2}]-(2*x-1)*D[y[x],x]+(x-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (c_2 \log (x)+c_1) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x - 1)*y(x) - (2*x - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False