10.16.7 problem 7

Internal problem ID [1407]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.6, Complex Eigenvalues. page 417
Problem number : 7
Date solved : Monday, January 27, 2025 at 04:56:52 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.112 (sec). Leaf size: 72

dsolve([diff(x__1(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t),diff(x__2(t),t)=2*x__1(t)+1*x__2(t)-2*x__3(t),diff(x__3(t),t)=3*x__1(t)+2*x__2(t)+1*x__3(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_3 \,{\mathrm e}^{t} \\ x_{2} \left (t \right ) &= \frac {{\mathrm e}^{t} \left (2 c_2 \sin \left (2 t \right )+2 c_1 \cos \left (2 t \right )-3 c_3 \cos \left (2 t \right )-3 c_3 \right )}{2} \\ x_{3} \left (t \right ) &= \frac {{\mathrm e}^{t} \left (2 c_1 \sin \left (2 t \right )-3 c_3 \sin \left (2 t \right )-2 c_2 \cos \left (2 t \right )+2 c_3 \right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 95

DSolve[{D[ x1[t],t]==1*x1[t]+0*x2[t]+0*x3[t],D[ x2[t],t]==2*x1[t]+1*x2[t]-2*x3[t],D[ x3[t],t]==3*x1[t]+2*x2[t]+1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to c_1 e^t \\ \text {x2}(t)\to \frac {1}{2} e^t ((3 c_1+2 c_2) \cos (2 t)+2 (c_1-c_3) \sin (2 t)-3 c_1) \\ \text {x3}(t)\to \frac {1}{2} e^t (-2 (c_1-c_3) \cos (2 t)+(3 c_1+2 c_2) \sin (2 t)+2 c_1) \\ \end{align*}